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Abstract
Electronic skin (e-skin) is playing an increasingly important role in health detection, robotic teleoperation, and
human-machine interaction, but most e-skins currently lack the integration of on-site signal acquisition and trans-
mission modules. In this paper, we develop a novel flexible wearable e-skin sensing system with 11 sensing channels
for robotic teleoperation. The designed sensing system is mainly composed of three components: e-skin sensor, cus-
tomized flexible printed circuit (FPC), and human-machine interface. The e-skin sensor has 10 stretchable resistors
distributed at the proximal and metacarpal joints of each finger respectively and 1 stretchable resistor distributed at
the purlicue. The e-skin sensor can be attached to the opisthenar, and thanks to its stretchability, the sensor can detect
the bent angle of the finger. The customized FPC, with WiFi module, wirelessly transmits the signal to the termi-
nal device with human-machine interface, and we design a graphical user interface based on the Qt framework for
real-time signal acquisition, storage, and display. Based on this developed e-skin system and self-developed robotic
multi-fingered hand, we conduct gesture recognition and robotic multi-fingered teleoperation experiments using
deep learning techniques and obtain a recognition accuracy of 91.22%. The results demonstrate that the developed
e-skin sensing system has great potential in human-machine interaction.

1. Introduction
Traditional wearable sensing devices such as myoelectric sensors [1], inertial sensors [2, 3], tactile sens-
ing arrays [4, 5], etc. are uncomfortable and inconvenient due to the large size and suffer from high
manufacturing cost. With the continuous breakthrough of sensing technology, electronic skin (e-skin)
sensors with desired characteristics begin to emerge [6, 7] which significantly improves the performance
of sensing devices.

Currently, e-skin is playing an increasingly important role in the emerging field of wearable sensing
devices [8]. As a new generation of wearable devices, e-skin is featured of flexibility, light weight,
comfortable wearing, and strong adhesion. It can not only be integrated into the robotic system to provide
rich and diverse information for robot perception, control, and decision-making [9] but also be attached
to the human body surfaces to provide diagnosis and monitoring capability [10]. Furthermore, e-skin
can be closely combined with the current artificial intelligence [11].

In the field of robotic intelligent perception [12], e-skin has a wide range of application prospects, and
there has been some research progress in this field. In ref. [13], a lightweight and soft capacitive e-skin
pressure sensor was designed for neuromyoelectric prosthetic hand, which enhanced the speed and dex-
terity of the prosthetic hand. In ref. [14], a soft e-skin, consisting of an array of capacitors and capable of
real-time detection of normal and tangential forces, was designed for robotics dexterous manipulation
of objects. In ref. [15], a biomimetic circuit was developed for e-skin attached to a prosthetic hand,
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which allows the prosthetic hand to sense edge stimulus in different directions. In ref. [16], an e-skin
integrated with solar cells was developed for proximity sensing and touch recognition in robotic hand. In
ref. [17], a multimodal e-skin was developed for robotic prosthesis, with sensors capable of simultane-
ously recognizing materials and textures. However, some current researches focus more on the sensor
itself [16, 17], ignoring the importance of the signal acquisition and analysis. In addition, the e-skin
only has a single dimension [18] and acquires little information. Therefore, it is necessary to consider
not only the performance of the e-skin, but also the efficiency of signal acquisition.

Besides the intelligent perception of robots, another potential application field of e-skin is human-
related health detection and human-machine interaction (HMI) [19–24]. In ref. [19], a stretchable e-skin
patch was designed for gesture recognition, and high recognition accuracy was achieved. In ref. [20],
a highly stretchable multilayer electronic tattoo was designed to realize many applications such as tem-
perature regulation, motion monitoring, and robot remote control. In ref. [21], a flexible and stretchable
tactile glove and deep convolutional neural networks were used to identify grasped objects and estimate
object weight. In ref. [22], a flexible and highly integrated e-skin sensor array was designed for sweat
detection, which integrated the functions of signal detection, wireless transmission and processing. In
ref. [23], a stretch-sensing device with grating-structured triboelectric nanogenerator was designed to
detect the bending or stretching of the spinal, which was helpful for human joint health detection. In
ref. [24], an e-skin with both sensing and feedback functions was developed for applications such as
robotic teleoperation, robotic virtual reality, robotic healthcare, etc. In some existing applications [19,
23], more focus is on the analysis of sensor signals, and there are relatively few real-time applications.
Meanwhile, some simple applications of e-skin [24] lack in-depth analysis and understanding of sensor
signals.

To solve the problems of e-skin sensor mentioned above, a wearable e-skin sensing system with the
characteristics of lightness, portability, scalability, and adhesion is developed for robotic hand teleoper-
ation in this paper. Unlike some e-skins mentioned earlier, our designed e-skin sensing system integrates
efficient sensing, transmission, and processing functions at the same time. First, the fabrication method
of e-skin sensor in detail is introduced. Then, a flexible printed circuit (FPC) with small size and low-
power consumption is specially customized for effective signal acquisition. The designed FPC wirelessly
transmits the data to the remote computer through the WiFi module, and a supporting data display and
saving interface based on Qt framework are developed. Next, based on the developed wearable e-skin
device, we conduct recognition experiments on 9 types of gesture actions using deep learning tech-
niques. Finally, based on the self-developed 2-DOF robotic hand platform, robotic hand teleoperation
experiment is carried out to demonstrate the novelty and potential of the e-skin.

2. E-skin sensor design
The structure of human fingers is delicate and complex, which is a multi-joint system composed of
multiple bones. According to the classification of physiological anatomy [25], the human index finger,
middle finger, ring finger, and little finger are similar in structure, which are all composed of three pha-
langes and one metacarpal bone, while the thumb is composed of two phalanges and one metacarpal
bone. The bones are connected through different joints, and the movement of joints contains rich infor-
mation. Therefore, effective monitoring of joint activities will help to the decoding of hand postures.
In this section, we present a design scheme of a multi-channel e-skin sensor for the extraction of hand
feature information, including the design principle of e-skin, the manufacturing process of e-skin, and
the preliminary test of e-skin.

2.1. E-skin design principle
To fully exploit the potential of e-skin in extracting motion information, a stretchable sensor that fits
completely on the skin surface is designed. This sensor consists of 11-channel stretchable resistors
attached to the major joints of the fingers and the skin surface, as shown in Fig. 1(a). The resistors
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Figure 1. (a) Schematic diagram of e-skin sensor. (b) Wearing diagram of e-skin sensor. (c) Overall
manufacturing process of stretchable e-skin sensor. (d, e) Physical drawing of DB100 microelectronic
printer.

1–10 are distributed at the proximal and metacarpal joints of each finger, respectively, and resistor 11 is
distributed at the purlicue. Carbon nanotubes are used as the fabrication material for stretchable resistors.

2.2. E-skin fabrication scheme
For the e-skin sensor fabrication, a microelectronic printer DB100 from Shanghai Mifang Electronic
Technology Co., Ltd is used to print the structure.

The design can be divided into the following steps:

• The Polydimethylsiloxane (PDMS) is coated on the Polyethylene (PET) membrane and dried in
the drying box to form the PDMS substrate.

• The fabricated PDMS substrate is neatly placed on the operation platform of DB100 printing
electronic multifunction printer, as shown in Fig. 1(d), (e).

• The printing parameters are properly set using the DB100 supporting software to print and draw
silver wires on the PDMS substrate.

• Finally, carbon nanotubes with a concentration of 5% on the stretchable silica gel are uniformly
spread on the PDMS substrate by template printing, and 11-channel stretchable e-skin is formed.

The overall fabrication process is shown in Fig. 1(c), and the final fabricated e-skin sensor is shown
in Fig. 1(b).

2.3. Performance test of e-skin
After the manufacturing of e-skin, it is necessary to test the stretching and electrical properties of e-skin
sensor. Here, we choose to test the stretching resistance of a single channel (the characteristics of other
channels are similar). The stretching property of the sensor is tested by Instron 5565 (Instron 5565,
Instron (Shanghai) LTD., USA), and the stretching ratio is set to 150%. In addition, the electrical per-
formance of the sensor is detected and output by Keithley (DMM7510, Tektronix). The final cyclic
stretching result is shown in Fig. 2. The sensor unit can maintain a relatively stable state under a large
number of repeated stretching conditions.
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Figure 2. Graph of the electrical properties of the e-skin under cyclic stretching conditions.

3. Wireless transmission interface design
For the e-skin sensor monitoring, we need to customize the data acquisition system to realize the trans-
mission of on-site signal. Wireless external communication plays an important role in the acquisition
system, and we choose WiFi as the communication channel. Since traditional printed circuit board is
uncomfortable to wear due to its hardness, the scheme of FPC is employed in this work.

3.1. Chip solution selection
The FPC mainly involves the microcontroller unit (MCU), the data wireless transmission module, the
power management module, the analog-to-digital conversion (ADC) module, etc., where MCU is the
core part. Considering low cost and power consumption, a STM32G431CBT6 chip with LQFP-48 pack-
age as the MCU is chosen. This chip has 170 MHz mainstream ARM Cortex-m4 MCU with DSP and
FPU, and 128 KB flash memory. At the same time, the built-in ADC modules of STM32 are used to mea-
sure the resistance. In addition, it also has abundant peripheral resources such as UART, SPI, Timer, etc.,
which can fully meet the system requirements.

In order to ensure the reliability and convenience of data transmission, W600-A800, a low-power
WiFi chip, is chosen as the data transmission module of our circuit to realize the communication between
e-skin sensor and data receiving terminal.

After the selection of MCU and WiFi module, an appropriate power management chip is needed to
ensure the normal work of STM32 and WiFi. Here, a widely used rechargeable 3.7 V lithium battery
is chosen as the power source. Since the STM32 and WiFi chips need a stable 3.3 V voltage to work
properly, a 3.7 V-to-3.3 V chip RT9013-33 is selected to generate 3.3 V voltage. For the convenience of
calculation, the TL431 chip is used to output a stable 3 V voltage as the reference voltage to the ADC
modules.

3.2. Circuit schematic design
The developed 11-channel resistors of e-skin sensor are measured based on two built-in ADCs in
STM32. The overall circuit connection and measurement principle are shown in Fig. 3(a). Here, the
resistors are connected in a voltage-dividing manner, and a reference resistor is connected in series with
the resistor to be measured for each channel. Since the built-in ADC is 12-bit, its maximum reading value
is 4095, corresponding to a 3 V voltage. Thus, the resistance value of each channel can be obtained:

Rc = Rf

/(
4096

Vadc
− 1

)
(1)
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(a) (b)

Figure 3. (a) Circuit connection and signal transmission diagram. (b) Overview of the designed FPC.

where Rc represents the resistance of each stretchable resistor, Rf represents the reference resistance
welded on the FPC, and Vadc represents the reading value of the built-in ADC.

The circuit schematic diagram of the e-skin monitoring unit is then designed based on above analysis.
In addition to the basic chip interface, the SWD interface for program debugging and the sensor interface
for connecting the e-skin are reserved. Finally, the physical diagram of the circuit after the welding test
is shown in Fig. 3(b).

3.3. Acquisition circuit programming
In order to realize the real-time measurement of e-skin sensor by the designed FPC, the STM32CubeMx
software is used to develop specific programs. The configuration of STM32CubeMx software mainly
includes the following steps: First, the MCU corresponding to the STM32 is selected and its clock is
configured. The clock frequency of all peripheral devices uses the default 170 MHz. The initialization
parameters of peripheral modules, such as UART, ADC, Timer, are then configured. Among them, the
baud rate of the UART is configured as 115200 for connecting to the WiFi chip, and the two ADCs are
configured as multi-channel scan query mode.

To achieve efficient transmission and obtain enough observation data, the timing period of the timer
is configured as 10ms; that is, the ADC collects a group of data every 10 ms (the acquisition frequency
is 100 Hz). In addition, due to the load of network, 10 groups of data are packaged and sent to receiving
terminal every 100 ms. This transmission can avoid packet loss and retransmission caused by frequent
data transmission, which makes the transmission process reliable and stable. Finally, the initialization
project code based on the keil integrated development environment is generated. The overall processing
flow is shown in Fig. 4.

4. Data visualization interface design
In this section, a multi-functional graphical user interface (GUI) based on Qt framework is developed
for real-time data interaction, which has multiple functions such as data visualization, multi-process
communication, and key operation. In addition, the stability of this GUI in sensor signals processing is
also verified by grasping experiments on objects of different shapes and sizes.

4.1. Qt-based GUI design
This GUI consists of three parts: the numerical display, the curve scrolling, and the function buttons,
as shown in Fig. 5. The numerical display in the top green box displays the received resistance value in
real time, the curve scrolling in the middle red box scrolls and displays the data, and the button under
the right bottom includes the control buttons for saving data and enabling WiFi communication.
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Figure 4. Program flow chart of STM32.

Figure 5. GUI with data display and save function developed based on Qt framework.

The system requires some configuration, such as IP address, port number, and other network infor-
mation. Considering that the period of sending data of the FPC is 100ms, and there are 10 groups of
measurement values in each period, we take the first group of measurement for display and save all 10
groups of data to the local. In this way, the real-time performance of data transmission is guaranteed.

4.2. Grasp test of different objects
Different gestures of the subjects will lead to the diversity of signals, so that the performance of e-skin
system can be verified according to the signal discrimination of different gestures. For verification, we
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conduct a test in which the subject grasps objects of various sizes and shapes such as hamburger, carton,
apple, banana, and water cup.

The obtained grasping test results are shown in Fig. 6. Specifically, for objects of different shapes,
such as apple, banana, and water cup, the obtained e-skin response data have obvious differences across
multiple channels. In addition, for objects with similar shapes such as apple and hamburger, the obtained
grasping response curves are also distinct due to their different sizes. This not only verifies the good
performance of e-skin sensor itself but also proves the stability and reliability of the signal acquisition
and transmission process.

5. Gesture recognition experiments
In this section, we tested and verified the designed e-skin sensing system. Considering that the e-skin
adapts to the hand, we design an interactive experiment for gesture recognition according to its character-
istics. Since the signals collected by the system belong to time sequence signals, and the data acquisition
frequency can reach 100 Hz, and the frequency of sending data is set to 10 Hz, deep learning techniques
such as long short-term memory (LSTM) neural network are used to identify such signals. Before the
experiment, the acquired raw signals are preprocessed.

5.1. Signals preprocessing
A sliding window method is used to segment the original signals for constructing training samples and
testing samples suitable for LSTM network. For a continuous period of e-skin data, it is intercepted
from T1 ms to T2 ms. At this time, the amount of data obtained on each channel of e-skin is N, and the
following relationship is satisfied:

N = (T2 − T1) · F/1000 (2)
where f represents the sampling frequency of e-skin by FPC, and its unit is Hz. Assuming that the
number of channels is C, the format of obtained original data meets xsample ∈ RN×C.

After the original data is obtained, sliding window is used to segment the data to construct multiple
sub-samples. The specific segmentation method is shown in Fig. 7. Assuming that the length of the
sliding window is W, the sliding step is λ, and the number of sub-samples after segmentation is L, the
relationship is:

LW − (L − 1)λ ≤ N (3)
where the number of sub-samples of e-skin data can be obtained as L = [

N−λ

W−λ

]
, where [·] represents the

largest integer not greater than the number in it. The format of the resulting sub-images is xsub-sample ∈
RW×C.

5.2. LSTM neural network algorithm
LSTM network is a special recurrent neural network (RNN). Ordinary RNN cannot deal with the long-
term dependency problem of time sequence signals in practice, while LSTM can deal with the long-term
dependency problem due to its special structure. In addition, LSTM networks are currently widely used
in speech recognition, machine translation, text generation and other fields. Therefore, this network
algorithm is chosen to recognize our e-skin signals.

The basic principle of LSTM neural network is shown in Fig. 8. Its internal mechanism is to regulate
the information flow through forget gate, input gate, and output gate. Each LSTM cell has its own unit
state ct, and LSTM uses forget gate and input gate to control the content of the unit state ct at the current
moment.
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Figure 6. Resistance response ratio of each channel of the e-skin when grasping different objects.

The forget gate determines how much of the unit state ct−1 at the previous moment is retained to the
current moment ct. The output of the forget gate is:

ft = σ
(
Wf · [ht−1, xt] + bf

)
(4)

where σ represents sigmoid activation function, Wf is the weight matrix of the forget gate, ht−1 represents
the output of the previous moment, xt represents the input of the current moment, and bf is the bias term
of the forget gate.
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Figure 7. Schematic diagram of sliding window.

Figure 8. Schematic diagram of LSTM network.

The input gate determines how much of the input of the network at the current time is retained to the
current state ct, and the output of the input gate is:

it = σ(Wi · [ht−1, xt] + bi) (5)

where Wi is the weight matrix of the input gate and bi is the bias term of the input gate. In addition, the
cell state c̃t describes the current input:

c̃t = tanh(Wc · [ht−1, xt] + bc) (6)

where Wc is the weight matrix of the current input, and bc is the bias term of the current input.
The forget gate, the input gate and the state of the current input c̃t jointly determine the unit state at

the current moment ct,

ct = ft ◦ ct−1 + it ◦ c̃t (7)

where ◦ represents vector cross product operation. Through this combination, LSTM adds the current
memory to the long-term memory, forming a new memory state ct.

Then, the output gate controls the updated memory state, and the output of output gate is:

ot = σ(Wo · [ht−1, xt] + bo) (8)

where Wo is the weight matrix of the output gate and bo is the bias term of the output gate. The output
of the LSTM unit ht is finally determined by the output gate ot and the new memory ct:

ht = ot ◦ tanh(ct) (9)

5.3. Experimental scheme
To verify the potential of the developed e-skin, we design multiple gesture recognition scenes. The
gestures dataset in the experiment are divided into static gestures (SG) and dynamic gestures (DG). The
SG include four categories, namely, the flex and extend of the index finger and the thumb, and the flex
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Figure 9. LSTM network structure for five dynamic gestures and four static gestures recognition.

and extend of the remaining three fingers, as shown in Fig. 9: SG1, SG2, SG3, and SG4. The DG include
five categories, which are defined as the gestures generated by the continuous movement of the hand.
The transformation of gesture state is shown in Fig. 9: DG1, DG2, DG3, DG4 and DG5.

In order to realize the recognition of SG and DG at the same time, we specially design a LSTM
network adapted to the e-skin signal to decode different gestures. The structure of the network is shown
in Fig. 9. The time step t is set to 20, that is, the input data dimension of the network is 20 × 11, which
represents the amount of data of 100 ms. In addition, a 2-layer LSTM network is designed, and a fully
connected layer and a softmax layer are set after the last time step. The construction of this network is
based on the open source keras deep learning framework.

A participant, whose back of hand is the same size as the designed e-skin, is involved in the exper-
iment. Then, the participant wears our e-skin to repeat different movements. Finally, based on the
designed LSTM network, training and testing are carried out on the constructed samples, and 91.22%
recognition accuracy is obtained. The confusion matrix of all movements recognition is shown in Fig. 10.

6. Robotic hand teleoperation
To further verify the practical application potential of the e-skin, we have conducted an interaction
experiment between robotic hand and human hand based on this e-skin using finite state machine (FSM)
algorithm. Specifically, we connect the previously identified SG with the postures of the robotic hand.
According to the recognition result, the robotic hand can complete the corresponding actions and accu-
rately switch between different states. In this way, the participants can realize the remote operation and
effective control of robotic hand.

6.1. Robotic hand platform
We have independently developed a multi-fingered hand platform. The specific internal structure of the
robotic hand is shown in Fig. 11(a). This robotic hand has 2 degrees of freedom. The index finger and
thumb can be flexed and extended at the same time, as can the remaining three fingers. They are driven
by 5 W and 2 W motor, respectively. In addition, the force-bearing parts of the robotic hand are made
of aluminum, and the shell is made of 3D-printed resin material. Such a design not only enables strong
mechanical properties but also reduces its weight.
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Figure 10. Confusion matrix diagram for dynamic gesture recognition.

(a) (b)

Figure 11. (a) Internal structure of the robotic hand. (b) Implementation diagram of robotic hand
teleoperation.

6.2. FSM based robotic teleoperation
To completely match the previous gesture recognition results, we consider the four postures POS1, POS2,
POS3, and POS4 of the robotic hand with the SG SG1, SG2, SG3, and SG4. DG are used as a priori
for static gesture transformations to prevent misoperations caused by misrecognition. The mapping state
transition diagram of the robotic hand posture and gesture dataset is shown in Fig. 12. The robotic hand
adopts PD-based position control.

The specific implementation of the robotic teleoperation is shown in Fig. 11(b), which is mainly
divided into the following steps:

• The WiFi communication between the e-skin sensor terminal and Qt-based HMI software
terminal is established to ensure that HMI software terminal can collect signals in real time.

• The socket communication between the HMI software and the signal processing terminal in
python is established. Then, the pre-trained LSTM classification model is loaded in advance,
and the online recognition and analysis of gesture signals are performed.
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Figure 12. State transition diagram of gestures and robotic hand.
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Figure 13. The position displacements of the driving motors in different states.

• Finally, the socket communication between the HMI software and the MFC-based control ter-
minal is established, and the recognition results are transmitted to the robot to realize the state
switching and follow-up of the robot.

We select SG1 as the initial gesture state and then test the state following performance of the
e-skin wearer in the order of SG1-SG2-SG4-SG3-SG1-SG4-SG1. After several tests, the robotic
hand can effectively follow the gestures to switch states, and the average switching delay is less
than 1s. In addition, the false recognition rate is low, and barely false actions of the robotic hand are
identified.

When the robotic fingers are in the open or closed state, the relative positions of the driving motors are
defined as 0 and 1, respectively. After the experimental tests, the position displacements of the driving
motors during the state switching are shown in Fig. 13. Figure 13 shows that the developed robotic hand
has good position control and can move the corresponding position rapidly.
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7. Discussion and conclusions
This paper has developed a stretchable and portable e-skin sensing system including e-skin sensor, FPC
with WiFi communication function, and human-machine interface. The e-skin sensor can be attached
to the opisthenar to detect the fingers’ flexion and extension. The FPC acquire the sensor signals and
then wirelessly transmits to the terminal device with our developed human-machine interface for data
processing.

LSTM neural network algorithm is used to test the collected e-skin signals and achieves 91.22%
recognition accuracy on 9 kinds of DG. Unlike conventional visual sensors, the e-skin is not affected by
light and environment, which is superior to traditional vision sensors in terms of cost and recognition
stability. Based on the pre-trained LSTM network model, we conduct robotic hand teleoperation exper-
iments using FSM, which validates the application potential of the developed e-skin for efficient control
of robotic hand poses.

In future, we will analyze the mechanical and electrical properties of the developed e-skin sensor in
detail. In addition, we will try to optimize the performance of this sensor and explore the relationship
between the deformation of the e-skin and the flex of the fingers.
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